Carbon, Deuterium and Heteronuclear NMR using Topspin

1. Carbon

There are several different types of carbon spectra such as a normal qualitative spectrum, DEPT, coupled, selectively decoupled, and those with and without NOE. A new capability, found only on the 400SL, is the ability to decouple 19F and 1H simultaneously while observing carbon.

Routine 1D carbon spectra are qualitative spectra, i.e., the intensities do not reflect the number of carbons in the molecule. Read this handout for more information.

IMPORTANT NOTE: when doing carbon or any heteronuclear spectra, one should not use the rga command (or start). The appropriate value of rg is already set. Simply start the acquisition with zg.

a. How to take 13C spectra

1. Read in the carbon parameters: Type new to define a new data set. Type rpar carbon.top. (If you are on the 400SL and you want to decouple 19F as well as 1H, see notes in section below on 19F decoupling.)
2. Lock and shim.
3. Tune the Probe: The next step is to tune the carbon channel of the probe. This is essential since if the probe is not tuned, no signal may be observed. On all NMRs except the 300wb, simply type atma and wait; tuning is automatic.

 On the 300wb, type wobh. On the screen, a tuning curve with a “dip” will be displayed. Tuning and matching capacitors are now adjusted to make the “dip” both centered and as deep as possible. The tuning capacitors are different on the 300wb and 300nb. On the 300wb they are gold sliders with numbered indicating positions. There is a chart near the probe that lists for each nucleus an approximate set of numbers for the tuning and matching. Adjust the least significant bit until the tuning curve is centered and as deep as possible. If you have not done this before, ask for assistance. You should also tune the proton channel if you intend to do DEPT. To do so, push the channel select button on the pre-amp box and wait until the wobble curve changes to proton (this takes a few seconds) and tune using the yellow proton rods. Type stop to end this tuning procedure.
4. Choose experiment and set parameters: By default, rpar carbon.top reads in parameters for the standard 1D 13C experiment. Set the following parameters if you want to do an experiment different from the standard 1D. DEPT135 is the recommended experiment.

<table>
<thead>
<tr>
<th>experiment</th>
<th>pulprog</th>
<th>d1</th>
<th>ns</th>
<th>ds</th>
<th>l4</th>
<th>aq</th>
<th>cnst12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1D</td>
<td>zgpg30</td>
<td>0.7</td>
<td>n</td>
<td>0</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>DEPT135</td>
<td>deptqsp</td>
<td>2</td>
<td>4*n</td>
<td>4</td>
<td>-</td>
<td>0.7</td>
<td>1.5</td>
</tr>
<tr>
<td>DEPT90</td>
<td>deptqsp</td>
<td>2</td>
<td>4*n</td>
<td>4</td>
<td>-</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>Inverse-gated</td>
<td>zgig30</td>
<td>0.7-30 sec</td>
<td>n</td>
<td>0</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>gated</td>
<td>zzgd30</td>
<td>0.7</td>
<td>n</td>
<td>0</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
</tr>
</tbody>
</table>

5. Start the acquisition by typing start. To look at the spectrum without stopping the acquisition, type tr, and then after the next scan is completed, type ef. To stop scanning, type halt.

b. Determining Multiplicity - DEPT
DEPT is the recommended standard carbon experiment. For maximum sensitivity for quats, however, the standard 1D is superior. The multiplicity refers to the number of directly attached protons, i.e., whether the carbon is a methine, methylene, or methyl. In the version of DEPT at Columbia, the quats are not suppressed. There are two useful versions of DEPT spectra. The version is determined by the parameter cnst12.

<table>
<thead>
<tr>
<th>experiment</th>
<th>cnst12</th>
<th>information</th>
</tr>
</thead>
<tbody>
<tr>
<td>dept90</td>
<td>1</td>
<td>CH, Q only</td>
</tr>
<tr>
<td>dept135</td>
<td>1.5</td>
<td>CH, CH3 up, CH2,Q down</td>
</tr>
</tbody>
</table>

The dept135 experiment is the most useful. The phase of the peak gives the multiplicity - the CH and CH3 peaks will point in one direction and the CH2 andquat peaks will be pointing in the opposite direction. The dept90 ideally gives only CH peaks but in practice this means that CH peaks are enhanced relative to others.

It is important to tune both the carbon and proton channels of the probe prior to taking a dept spectrum. The DEPT technique is a little more sensitive than a qualitative carbon spectra. Edited HSQC give the same info as DEPT but are much more sensitive.

Shown below is the DEPT135 (bottom) and DEPT90 (top) spectrum of sucrose. Note the quats have the same phase as CH2s.

c. 13C with 19F and 1H decoupling

Carbon observation with 13C and 19 decoupling is only possible on the 400SL with the TBO probe. Instead of rpar carbon.top, you must type rpar carbon_19F_1H_dec_sp.top. Type atma to tune the probe.

Decoupling the entire 19F shift range is not possible since it is so large. It is only possible to decouple a partial range (approximately +- 75 PPM) on the 400SL. You must center the decoupler on your peaks of interest. If there are multiple 19F peaks with very large shift differences, you may have to take two spectra. The parameter o2p defines the center of the decoupling in ppm. It is possible to decouple only 19F and not 1H. Ask for details.

d. About sample size and tubes
When sample quantity is very limited, it is advantageous to limit the amount of solvent in which it is dissolved. If a normal 5mm tube is used, however, this cannot be less than about 500μL for proton spectra or 300μL for carbon spectra without causing serious lineshape problems (shimming problems) and the attendant loss of signal-to-noise. When one reduces the solvent quantity in a normal 5mm tube, it is important that the sample be centered within the coil. To do this, center the sample about the scored line on the plastic depth gauge.

There are special tubes made by Shigemi that can be used to restrict the active volume and, hence, reduce the amount of solvent without causing lineshape problems. There are also susceptibility plugs, available from Wilmad, that accomplish the same thing.

e. Signal-to-noise

The signal-to-noise improves as the square-root of the number of scans and thus the square-root of the time of the acquisition. An approximate guide to experiment length for the standard 1D for the 500 (based on strychnine, MW=334. It is the moles that are important so scale according your molecule) is as follows:

<table>
<thead>
<tr>
<th>sample quantity (per ml)</th>
<th>Molarity (mM)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>25mg</td>
<td>75</td>
<td>5min</td>
</tr>
<tr>
<td>7.5mg</td>
<td>22.5</td>
<td>30min</td>
</tr>
<tr>
<td>3mg</td>
<td>9</td>
<td>3hrs</td>
</tr>
<tr>
<td>1.5mg</td>
<td>4.5</td>
<td>12hrs</td>
</tr>
</tbody>
</table>

Only sign-up for the time you need. Spectra that show no baseline noise have used too much spectrometer time. The minimum amount for an overnight run in a shigemi tube is about 0.75 mg for a 300 amu small molecule. If your molecular weight is much larger than 300, say 1000 amu, then the optimum S/N requires a longer pulse width (Ernst Angle). To effect this change, simply change the value of pulprog to zgpg instead of zgpg30.

Carbon spectra may be essential but they are very time-consuming. A 2D HSQC requires much less time than a single carbon spectrum. If you are only interested in protonated carbons, the HSQC is to be greatly preferred over the 1D carbon.

f. Decoupling modes

The decoupling mode can be controlled to give quantitative or coupled spectra. The pulse sequence for standard 1D experiment is divided into 2 periods, d1 and aq, separated by the pulse. D1 is the relaxation delay and aq is the time the FID is sampled.
Shown here are the standard experiments using different decoupling modes and the Bruker pulse sequence. A filled rectangle indicates the 1^H decoupler is on. When the decoupler is on during the relaxation delay, the NOE effect is developed. When the decoupler is on during acquisition, a decoupled spectrum is acquired. These two effects are largely independent, i.e., one can have a coupled spectrum with NOE or a decoupled spectrum without NOE. The normal qualitative carbon spectrum is decoupled with NOE and hence, the decoupler is on all the time.

On Bruker NMR instruments, the pulse program must be changed to change the decoupler mode. The variable `pulprog` contains the name of the pulse program to be used for acquisition. See the table on the first page.

g. Quantitative Spectra – Inverse-gated decoupling

Normal carbon spectra are qualitative in that the intensities do not correspond to the number of carbons present. There are two reasons for this: some carbons may not receive the full NOE and different carbons have different relaxation times (T_1); carbons with long T_1’s experience saturation which results in reduced intensity. In general, carbons with no directly bonded protons suffer most from reduced NOE and long T_1’s. Quantitative spectra are taken without NOE, decoupled, and with a
very long relaxation delay, d1, ranging from 2 -30 sec. Use the inverse-gated mode for quantitative spectra.

13C quantitative spectra take an extremely long time to acquire and should only be done overnight on concentrated samples. This mode is much more useful for 31P spectra.

h. Coupled Spectra- gated decoupling

The simplest approach to measuring carbon-proton coupling constants is to take the carbon spectra coupled. For sensitivity reasons, these spectra are usually acquired with NOE. Use the gated decoupling mode.

Since the peak intensity is now divided into multiplets instead of singlets, this experiment must run approximately 10 times longer than the qualitative, decoupled one, in order to get equivalent signal-to-noise spectra.

2. Nuclei other than carbon

The best place for most heteronuclear NMR is the 300wb, 400SL, or 500. Only the 400SL and 500 can do 19F. To see a list of heteronuclear parameter sets, type `rpar *.top`. A partial list is:

- boron11.top
- carbon.top
- deuterium.top
- fluorine.top
- lead.top
- lithium.top
- mercury.top
- n15.top
- phosphorus.top
- platinum.top
- Potassium.top
- selenium.top
- silicon.top
- sodium.top
- tellurium.top
- thallium.top
- tin.top

The NMR web site has a table of nuclei that are setup: https://nmr.chem.columbia.edu/content/x-nuclei

Others are possible. Ask John Decatur.

To setup for 7Li, for example, you simply need to type `rpar lithium.top`, tune the probe, shim, and type zg.

Some nuclei (15N, Sn, Te, Si) have a negative gyro-magnetic ratio. This has implications for the pulse sequence one should use. When the gyro-magnetic ratio is negative, the NOE from protons is opposite in sign to its natural signal. If it happens that the NOE signal is nearly equal to the natural signal, they will cancel and give no apparent signal. Inverse gated decoupling mode (pulprog = zgig30, see above, or DEPT) is preferred to avoid the buildup of NOE for these nuclei. Ask for details.
For some nuclei, the INEPT or DEPT experiment can provide much higher signal-to-noise than the standard 1D experiment. This is true only for peaks that have observable couplings to proton. For example, for ^{29}Si and ^{15}N, the DEPT provides 2.5 times more signal than the standard 1D with NOE.

Removing Baseline distortion:
For some nuclei, such as ^{29}Si, ^{11}B, or ^{19}F, the spectrum baseline is often rolling or large broad peaks due to background from the glass in NMR tubes or probe materials. To remove most of it, one can make the parameter, de, equal to 100us, prior to taking the spectrum. A better approach, however, is backward linear prediction (BLP). For this, do not alter the parameter de. During processing type convdta and give a new experiment number. Then in Topspin, in Procpars, set ME_mod to LPbc, TDoff to about 32, and NCOEF to value anywhere from 128 to 1024. Then, type ef. There is a command, cryoproc1d, that automatically performs BLP. MestreNova can also perform backward LP.

a. Deuterium

Deuterium can be observed on the following NMRs: 300wb, 400SL, 400, and 500asc. You must use normal protonated solvents and NOT deuterated solvents. There cannot be a lock and thus, one cannot shim on your sample normally. If you know the shift of your protonated solvent, you can Topshim on this peak with the command: `topshim lockoff 1h 01p=#` in the command line where # is the ppm of largest solvent peak. If there is more than one peak, append selwid=0.5 to the command above. Since there is no lock, the magnetic field may not be in its usually place and thus a chemical shift reference is essential. For a reference, one can add a drop or two of the corresponding deuterated version of your solvent.

The electronic cabling setup for 2H differs among the NMRs. **For the 400, 400SL, and 500asc, one uses the lock channel to observe 2H. This means the sensitivity is lower. It also means the setup procedure is very straightforward.**

Steps to observe 2H on the 400, 400SL, and 500asc:
- 1. `rpar deuterium.top` (rpar deuterium_lockamp.top on the 400SL)
- 2. Type ii.
- 3. Type start.

On the 400SL and 300wb, one can use the broadband observe channel and this may provide better sensitivity and shorter pulse widths. The cost is that the steps are more involved. Follow this procedure:

1. Turn off the lock and the field sweep. On the bsmdisp keypad (300wb only) press the lock on/off button to turn off. The sweep button will then automatically turn on. You must turn the sweep off. On the bsmdisp software window (all others), select the lock/level tab and click lock-off to turn off lock. Then click sweep on-off to turn off sweep.
2. Type locnuc and select off. Type ii.
3. You may need to disconnect the 2H cable from the probe (a must on the 300wb). On the 400SL, you need to remove the 2H stop filter from the BB channel of the probe.
4. Read parameters for 2H: `rpar deuterium.top` and then tune the probe for 2H.
5. Take spectra as normal.

When finished you MUST do the following:
1. Reconnect the 2H cable to the probe, if necessary.
2. Replace the 2H filter on the BB channel.
3. Turn the lock back on. Type locnuc and select 2H and type ii.
4. Tune the BB channel of the probe back to carbon. To do so, change the data set, type rpar carbon.top and then type atma. If the probe remains tuned to 2H, the lock will NOT work!

b. Fluorine

The 400SL and 500 are capable of observing 19F. To setup, type rpar fluorine.top. Then type atma, and start to begin. Decoupling protons is also an option. To setup, type rpar fluorine_1Hdec.top. You will need to perform backward linear prediction to remove the large rolling peaks.

For quantitating 19F, it is important to use a 30 degree pulse instead of 90 degree. This improves the excitation bandwidth. To use a 30 degree pulse change pulprog to zg30.

It is also possible to observe 1H while decoupling 19F. Ask John Decatur.

3. Selective Decoupling of Protons

To selectively decouple protons while observing carbon, or more commonly, phosphorus, follow this procedure (written assuming phosphorus observation):

1. Take a 1D spectrum of proton. Obtain the frequency of the proton to be decoupled by clicking on , then adjusting the red line to the desired frequency, and click the left mouse button. Choose o2 and note the frequency.
2. Take a standard phosphorus spectrum. Change the data set and retake spectrum after changing the following parameters to the following values:
 - pulprog – zgcw
 - O2 – value determined in step one
 - pldb26 – power for selectively decoupling protons
3. Power level pldb26 depends on the breadth of the multiplet. A multiplet that covers 200 Hz needs much more power than one cover 20 Hz. Higher powers ensure complete decoupling but at higher powers, neighboring protons may also show decoupling effects. Several different powers may need to be investigated to ensure good results. Power levels are in decibels of attenuation. **Lower numbers mean higher powers. Never use a level less than 25 dB or probe damage may result!** Use the table below as a guide:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>High power for 200 Hz multiplet</th>
<th>Power for 20 Hz multiplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>300nb</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>300wb</td>
<td>44</td>
<td>57</td>
</tr>
<tr>
<td>400</td>
<td>47</td>
<td>50</td>
</tr>
</tbody>
</table>

4. Finally, you may want to compare decoupled and coupled spectra. Use dual display to do so.

4. Line Broadening

The processing parameter, lb, controls the amount of exponential multiplication applied to the FID when it is transformed with the ef command (or the em command). The ft command does not apply exponential multiplication. Carbon spectra are always processed with some amount of line broadening and, thus, the ef command should always be used to transform carbon and other heteronuclear spectra. The normal value for carbon spectra is 3. Larger values, up to about 6, result in
broader lines but higher signal-to-noise, while smaller values decrease line width (and increase resolution) but increase the noise.

5. Automating the process

It is sometimes desired to be able to do a qualitative carbon spectrum as well as both dept spectra in series without being present at the spectrometer to start each separate experiment. On ALL NMRs except the 300wb there is a queuing system. If the NMR is currently collecting spectra, then typing zg puts an experiment into a queue that will be executed when the current job is complete.

On the 300wb there is no queuing system. The command **xau multizg** solves this problem. It executes multiple acquisitions on sequential experiment numbers. For example, assume your first experiment is <mycarbondata 2 1 x jimmy > while the second is <mycarbondata 3 1 x jimmy > and the third is <mycarbondata 4 1 x jimmy >. When you type **xau multizg** it will ask you how many experiments you wish to perform. If your current data set is <mycarbondata 2 1 x jimmy > and you enter 3, it will collect data for <mycarbondata 2 1 x jimmy >, <mycarbondata 3 1 x jimmy >, and <mycarbondata 4 1 x jimmy > in this order. Note that the data sets must already exist and have the correct parameters set.

6. Chemical Shift Referencing

Often in heteronuclear NMR, there are conflicting primary references. In 2001, IUPAC set new definitions and standards for NMR referencing, and updated these in 2008. A significant change from past conventions is the introduction of a “unified scale,” with a single primary reference of the 1H resonance of TMS for all nuclei. The unified scale relies on Ξ values, stated as percentages:

$$\Xi_x = 100 \times \left(\frac{\nu_x}{\nu_{TMS}} \right)$$

where \(\nu_x\) = the absolute frequency for the 0 ppm position in the X spectrum, and \(\nu_{TMS}\) = the TMS absolute frequency for \(^1\)H of 0.1% TMS in CDCL3. For example, on the 500, \(\nu_{TMS} = 500.130013\). The \(\Xi_x\) value is found in a table in reference 2 and is specific for each nucleus. \(\nu_x\) is equal to the parameter **SF** in Bruker's software. Below is a table with the proper SF values already calculated according to the equation above. These SF values set the zero ppm scale. With Topspin software, follow this procedure:

The value of SF must be set indirectly. Using the following relationship: \(SR_x = SF - BF1_x\). Find the value of SF from the table below, and the value of BF1 from Topspin's acqpar. Then, calculate SR and enter this value. Note that SR is in Hz and SF and BF1 are in MHz so you must convert prior to subtraction. Then you must check that SF matches the value in the table.

Mestrenova also allows the use of absolute frequency referencing. You must have a properly referenced proton spectrum (ideally TMS in CDCL3) loaded along with the X nuclei spectrum. Then in the X nuclei window, click the ‘Absolute Reference’ button of the toolbar and then select 1H experiment as the reference and check the boxes of the other experiments that you want to reference. The procedure works for 2D as well.

The NMR lock controls the frequency calibration. **The lock must know the identity of the lock solvent at all times.** For each sample, one must lock and choose the correct solvent.

An additional complication arises when the solvent has more than one resonance. Toluene, for example, has two sets of peaks. Normally the methyl group is chosen by the lock. The lock, however,
may find the aromatic peaks first and lock on these. If this occurs, all referencing will be off by the difference in chemical shift of the two solvent peaks. For this reason, when working in solvents with multiple resonances, one must manually check that the lock has found the correct peak. Ask for a quick demonstration of this procedure.

Table of SF values for common nuclei based on IUPAC method for our NMRs. See Harris, et al (2001) for the actual molecule that was used to choose the 0 PPM. Note that the 400L and 400SL have slightly different frequencies. This is also true of the 500 and 500ASC.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>300</th>
<th>400SL</th>
<th>400L</th>
<th>500</th>
<th>500asc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>300.1300065</td>
<td>400.1300092</td>
<td>399.9200134</td>
<td>500.1300130</td>
<td>500.0530004</td>
</tr>
<tr>
<td>7Li</td>
<td>38.863797</td>
<td>116.6419165</td>
<td>155.5057145</td>
<td>155.4241022</td>
<td>194.369513</td>
</tr>
<tr>
<td>11B</td>
<td>32.083974</td>
<td>128.3776081</td>
<td>128.3102331</td>
<td>160.4615833</td>
<td>160.4368746</td>
</tr>
<tr>
<td>13C</td>
<td>25.14502</td>
<td>75.46775016</td>
<td>100.6127708</td>
<td>100.5599674</td>
<td>125.7577918</td>
</tr>
<tr>
<td>15N</td>
<td>10.136767</td>
<td>40.5602463</td>
<td>40.53895994</td>
<td>50.69701411</td>
<td>50.68920753</td>
</tr>
<tr>
<td>17O</td>
<td>13.556457</td>
<td>54.24345264</td>
<td>54.21498465</td>
<td>67.79991016</td>
<td>67.78946998</td>
</tr>
<tr>
<td>19F</td>
<td>94.094011</td>
<td>376.4983749</td>
<td>376.3007814</td>
<td>470.5923894</td>
<td>470.5199252</td>
</tr>
<tr>
<td>23Na</td>
<td>26.4519</td>
<td>79.39008919</td>
<td>105.8419899</td>
<td>105.786442</td>
<td>132.2938909</td>
</tr>
<tr>
<td>29Si</td>
<td>40.480742</td>
<td>121.4948536</td>
<td>161.9755967</td>
<td>202.4563402</td>
<td>202.425165</td>
</tr>
<tr>
<td>31P</td>
<td>4.666373</td>
<td>14.00518559</td>
<td>18.67155871</td>
<td>23.3379318</td>
<td>23.334382</td>
</tr>
<tr>
<td>39K</td>
<td>22.193175</td>
<td>66.60837757</td>
<td>88.80155317</td>
<td>95.3826045</td>
<td>95.3676728</td>
</tr>
<tr>
<td>109Ag</td>
<td>4.653533</td>
<td>13.966489</td>
<td>18.62018202</td>
<td>23.2737152</td>
<td>23.2737152</td>
</tr>
<tr>
<td>113Cd</td>
<td>22.193175</td>
<td>66.60837757</td>
<td>88.80155317</td>
<td>95.3826045</td>
<td>95.3676728</td>
</tr>
<tr>
<td>117Sn</td>
<td>35.632259</td>
<td>106.9431013</td>
<td>142.5753612</td>
<td>178.2076216</td>
<td>178.1801802</td>
</tr>
<tr>
<td>125Te</td>
<td>31.549769</td>
<td>94.69032375</td>
<td>126.2400936</td>
<td>157.7898638</td>
<td>157.765665</td>
</tr>
<tr>
<td>147Pm</td>
<td>21.496784</td>
<td>79.94957717</td>
<td>79.45286591</td>
<td>99.36176493</td>
<td>99.3464669</td>
</tr>
<tr>
<td>199Hg</td>
<td>17.910822</td>
<td>53.75575123</td>
<td>71.6657372</td>
<td>89.5773964</td>
<td>89.56360281</td>
</tr>
<tr>
<td>203Tl</td>
<td>17.910822</td>
<td>53.75575123</td>
<td>71.6657372</td>
<td>89.5773964</td>
<td>89.56360281</td>
</tr>
<tr>
<td>207Pb</td>
<td>57.1232</td>
<td>228.5670654</td>
<td>228.4741091</td>
<td>285.6926767</td>
<td>285.6462755</td>
</tr>
</tbody>
</table>

REFERENCES

Chemical Shift Issues for Nitrogen.

The chemical shift ranges are the same for both nitrogen isotopes 14N and 15N. IUPAC recommends CH3NO2(90% in CDCl3) as the chemical shift standard for both nuclei. However, most
spectroscopists reference nitrogen spectra to liquid NH$_3$ and Topspin, by default, uses it as well. To convert 15N chemical shifts to the IUPAC CH$_3$NO$_2$ standard, subtract 380.5 ppm and for 14N, subtract 381.6 ppm.